Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

θ Oph (Imad)


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Discovery of magnetic fields in the βCephei star ξ1 CMa and in several slowly pulsating B stars*
We present the results of a magnetic survey of a sample of eightβCephei stars and 26 slowly pulsating B (SPBs) stars with the FOcalReducer low dispersion Spectrograph at the Very Large Telescope. A weakmean longitudinal magnetic field of the order of a few hundred Gauss isdetected in the βCephei star ξ1CMa and in 13 SPBstars. The star ξ1CMa becomes the third magnetic staramong the βCephei stars. Before our study, the star ζCas wasthe only known magnetic SPB star. All magnetic SPB stars for which wegathered several magnetic field measurements show a field that varies intime. We do not find a relation between the evolution of the magneticfield with stellar age in our small sample. Our observations imply thatβCephei and SPB stars can no longer be considered as classes ofnon-magnetic pulsators, but the effect of the fields on the oscillationproperties remains to be studied.

Asteroseismology of the β Cephei star 12 (DD) Lacertae: photometric observations, pulsational frequency analysis and mode identification
We report a multisite photometric campaign for the β Cephei star 12Lacertae. 750 h of high-quality differential photoelectricStrömgren, Johnson and Geneva time-series photometry were obtainedwith nine telescopes during 190 nights. Our frequency analysis resultsin the detection of 23 sinusoidal signals in the light curves. Ten ofthose correspond to independent pulsation modes, and the remainder arecombination frequencies. We find some slow aperiodic variability such asthat seemingly present in several β Cephei stars. We perform modeidentification from our colour photometry, derive the spherical degree lfor the five strongest modes unambiguously and provide constraints on lfor the weaker modes. We find a mixture of modes of 0 <=l<= 4. Inparticular, we prove that the previously suspected rotationally splittriplet within the modes of 12 Lac consists of modes of different ltheir equal frequency splitting must thus be accidental.One of the periodic signals we detected in the light curves is argued tobe a linearly stable mode excited to visible amplitude by non-linearmode coupling via a 2:1 resonance. We also find a low-frequency signalin the light variations whose physical nature is unclear; it could be aparent or daughter mode resonantly coupled. The remaining combinationfrequencies are consistent with simple light-curve distortions.The range of excited pulsation frequencies of 12 Lac may be sufficientlylarge that it cannot be reproduced by standard models. We suspect thatthe star has a larger metal abundance in the pulsational driving zone, ahypothesis also capable of explaining the presence of β Cepheistars in the Large Magellanic Cloud.

δ Ceti Is Not Monoperiodic: Seismic Modeling of a β Cephei Star from MOST Space-based Photometry
The β Cephei star δ Ceti was considered one of the fewmonoperiodic variables in its class. Despite (or perhaps because of) itsapparently simple oscillation spectrum, it has been challenging andcontroversial to identify this star's pulsation mode and constrain itsphysical parameters seismically. Broadband time-resolved photometry ofδ Ceti spanning 18.7 days with a duty cycle of about 65% obtainedby the Microvariability and Oscillations of Stars (MOST) satellite-thefirst scientific observations ever obtained by MOST-reveals that thestar is actually multiperiodic. Besides the well-known dominantfrequency of f1=6.205886 day-1, we have discoveredin the MOST data its first harmonic 2f1 and three otherfrequencies (f2=3.737, f3=3.673, andf4=0.318 day-1), all detected with asignal-to-noise ratio (S/N)>4. In retrospect, f2 was alsopresent in archival spectral line-profile data but at lower S/N. Wepresent seismic models whose modes match exactly the frequenciesf1 and f2. Only one model falls within the commonpart of the error boxes of the star's observed surface gravity andeffective temperature from photometry and spectroscopy. In this model,f1 is the radial (l=0) first overtone, and f2 isthe g2 (l=2, m=0) mode. This model has a mass of 10.2+/-0.2Msolar and an age of 17.9+/-0.3 Myr, making δ Ceti anevolved β Cephei star. If f2 and f3 arerotationally split components of the same g2 mode, then thestar's equatorial rotation velocity is either 27.6 km s-1 orhalf this value. Given its vsini of about 1 km s-1, thisimplies that we are seeing δ Ceti nearly pole-on.Based on data from the MOST satellite, a Canadian Space Agency mission,jointly operated by Dynacon Inc., the University of Toronto Institutefor Aerospace Studies, and the University of British Columbia, with theassistance of the University of Vienna.

Ultraviolet spectroscopy of the extended solar corona
The first observations of ultraviolet spectral line profiles andintensities from the extended solar corona (i.e., more than 1.5 solarradii from Sun-center) were obtained on 13 April 1979 when arocket-borne ultraviolet coronagraph spectrometer of theHarvard-Smithsonian Center for Astrophysics made direct measurements ofproton kinetic temperatures, and obtained upper limits on outflowvelocities in a quiet coronal region and a polar coronal hole. Followingthose observations, ultraviolet coronagraphic spectroscopy has expandedto include observations of over 60 spectral lines in coronal holes,streamers, coronal jets, and solar flare/coronal mass ejection (CME)events. Spectroscopic diagnostic techniques have been developed todetermine proton, electron and ion kinetic temperatures and velocitydistributions, proton and ion bulk flow speeds and chemical abundances.The observations have been made during three sounding rocket flights,four Shuttle deployed and retrieved Spartan 201 flights, and the Solarand Heliospheric Observatory (SOHO) mission. Ultraviolet spectroscopy ofthe extended solar corona has led to fundamentally new views of theacceleration regions of the solar wind and CMEs. Observations with theUltraviolet Coronagraph Spectrometer (UVCS) on SOHO revealedsurprisingly large temperatures, outflow speeds, and velocitydistribution anisotropies in coronal holes, especially for minor ions.Those measurements have guided theorists to discard some candidatephysical processes of solar wind acceleration and to increase and expandinvestigations of ion cyclotron resonance and related processes.Analyses of UVCS observations of CME plasma properties and the evolutionof CMEs have provided the following: temperatures, inflow velocities andderived values of resistivity and reconnection rates in CME currentsheets, compression ratios and extremely high ion temperatures behindCME shocks, and three dimensional flow velocities and magnetic fieldchirality in CMEs. Ultraviolet spectroscopy has been used to determinethe thermal energy content of CMEs allowing the total energy budget tobe known for the first time. Such spectroscopic observations are capableof providing detailed empirical descriptions of solar energetic particle(SEP) source regions that allow theoretical models of SEP accelerationto be tailored to specific events, thereby enabling in situ measurementsof freshly emitted SEPs to be used for testing and guiding the evolutionof SEP acceleration theory. Here we review the history of ultravioletcoronagraph spectroscopy, summarize the physics of spectral lineformation in the extended corona, describe the spectroscopic diagnostictechniques, review the advances in our understanding of solar windsource regions and flare/CME events provided by ultraviolet spectroscopyand discuss the scientific potential of next generation ultravioletcoronagraph spectrometers.

A high-resolution spectroscopy survey of β Cephei pulsations in bright stars
We present a study of absorption line-profile variations in early-B typenear-main-sequence stars without emission lines. We have surveyed atotal of 171 bright stars using the Nordic Optical Telescope (NOTSA),William Herschel Telescope (ING) and Coudé Auxiliary Telescope(ESO). Our sample contains 75% of all O9.5-B2.5 III-V non-emission-linestars brighter than 5.5 mag. We obtained high signal-to-noise,high-resolution spectra of the SiIII λ4560 triplet - for 125stars of our sample we obtained more than one spectrum - and examinedthese for pulsational-like line-profile variations and/or structure. Weconclude that about half of our sample stars show evidence forline-profile variations (LPV). We find evidence for LPV in about 65% ofour sample stars brighter than V=5.5. For stars with rotationalbroadening V sin i ˜100 km s-1, we find evidence for LPVin about 75% of the cases. We argue that it is likely that these LPV areof pulsational origin, and that hence more than half of thesolar-neighbourhood O9.5-B2.5 III-V stars is pulsating in modes that canbe detected with high-resolution spectroscopy. We detected LPV in 64stars previously unknown to be pulsators, and label these stars as newβ Cep candidates. We conclude that there is no obvious differencein incidence of (pulsational) LPV for early-B type near-main-sequencestars in binaries or in OB associations, with respect to single fieldstars.

E. E. Barnard's Milky Way
Not Available

An asteroseismic study of the β Cephei star θ Ophiuchi: spectroscopic results
We present the results of a detailed analysis of 121 ground-basedhigh-resolution, high signal-to-noise ratio spectroscopic measurementsspread over 3 yr for the β Cephei star θ Ophiuchi. Wediscovered θ Oph to be a triple system. In addition to thealready known speckle B5 companion of the B2 primary, we showed thepresence of a low-mass spectroscopic companion and we derived an orbitalperiod of 56.71 d with an eccentricity of 0.1670. After removing theorbit we determined two frequencies for the primary in the residualradial velocities: f1= 7.1160 cd-1 andf2= 7.4676 cd-1. We also found the presence off3= 7.3696 cd-1 by means of a two-dimensionalfrequency search across the SiIII 4567-Åprofiles. We identifiedthe m-value of the main mode with frequency f1 by taking intoaccount the photometric identifications of the degrees l. By means ofthe moment method and the amplitude and phase variations across the lineprofile, we derived (l1, m1) = (2, -1). Thisresult allows us to fix the mode identifications of the whole quintupletfor which three components were detected in photometry. This is ofparticular use for our forthcoming seismic modelling of the primary. Wealso determined stellar parameters of the primary by non-localthermodynamic equilibrium hydrogen, helium and silicon line profilefitting and we obtained Teff= 24000 K and logg= 4.1, which isconsistent with photometrically determined values.

An asteroseismic study of the β Cephei star θ Ophiuchi: photometric results
We have carried out a three-site photometric campaign for the βCephei star θ Oph from 2003 April to August. 245 h ofdifferential photoelectric uvy photometry were obtained during 77 clearnights. The frequency analysis of our measurements has resulted in thedetection of seven pulsation modes within a narrow frequency intervalbetween 7.116 and 7.973 c d-1. No combination or harmonicfrequencies have been found. We have performed a mode identification ofthe individual pulsations from our colour photometry that shows thepresence of one radial mode, one rotationally split l= 1 triplet andpossibly three components of a rotationally split l= 2 quintuplet. Wediscuss the implications of our findings and point out the similarity ofthe pulsation spectrum of θ Oph to that of another β Cepheistar, V836 Cen.

A Mid-Infrared Imaging Survey of Embedded Young Stellar Objects in the ρ Ophiuchi Cloud Core
Results of a comprehensive, new, ground-based mid-infrared imagingsurvey of the young stellar population of the ρ Ophiuchi cloud arepresented. Data were acquired at the Palomar 5 m and at the Keck 10 mtelescopes with the MIRLIN and LWS instruments, at 0.5" and 0.25"resolutions, respectively. Of 172 survey objects, 85 were detected.Among the 22 multiple systems observed, 15 were resolved and theirindividual component fluxes determined. A plot of the frequencydistribution of the detected objects with SED spectral slope shows thatYSOs spend ~4×105 yr in the flat-spectrum phase,clearing out their remnant infall envelopes. Mid-infrared variability isfound among a significant fraction of the surveyed objects and is foundto occur for all SED classes with optically thick disks. Large-amplitudenear-infrared variability, also found for all SED classes with opticallythick disks, seems to occur with somewhat higher frequency at theearlier evolutionary stages. Although a general trend of mid-infraredexcess and near-infrared veiling exists progressing through SED classes,with Class I objects generally exhibiting rK>=1,flat-spectrum objects with rK>=0.58, and Class III objectswith rK=0, Class II objects exhibit the widest range ofrK values, ranging from 0<=rK<=4.5. However,the highly variable value of veiling that a single source can exhibit inany of the SED classes in which active disk accretion can take place isstriking and is direct observational evidence for highly time-variableaccretion activity in disks. Finally, by comparing mid-infrared versusnear-infrared excesses in a subsample with well-determined effectivetemperatures and extinction values, disk-clearing mechanisms areexplored. The results are consistent with disk clearing proceeding fromthe inside out.

B Star Rotational Velocities in h and χ Persei: A Probe of Initial Conditions during the Star Formation Epoch?
Projected rotational velocities (vsini) have been measured for 216 B0-B9stars in the rich, dense h and χ Persei double cluster and comparedwith the distribution of rotational velocities for a sample of fieldstars having comparable ages (t~12-15 Myr) and masses (M~4-15Msolar). For stars that are relatively little evolved fromtheir initial locations on the zero-age main sequence (ZAMS) (those withmasses M~4-5 Msolar), the mean vsini measured for the h andχ Per sample is slightly more than 2 times larger than the meandetermined for field stars of comparable mass, and the cluster and fieldvsini distributions differ with a high degree of significance. Forsomewhat more evolved stars with masses in the range 5-9Msolar, the mean vsini in h and χ Per is 1.5 times thatof the field; the vsini distributions differ as well, but with a lowerdegree of statistical significance. For stars that have evolvedsignificantly from the ZAMS and are approaching the hydrogen exhaustionphase (those with masses in the range 9-15 Msolar), thecluster and field star means and distributions are only slightlydifferent. We argue that both the higher rotation rates and the patternof rotation speeds as a function of mass that differentiatemain-sequence B stars in h and χ Per from their field analogs werelikely imprinted during the star formation process rather than a resultof angular momentum evolution over the 12-15 Myr cluster lifetime. Wespeculate that these differences may reflect the effects of the higheraccretion rates that theory suggests are characteristic of regions thatgive birth to dense clusters, namely, (1) higher initial rotationspeeds; (2) higher initial radii along the stellar birth line, resultingin greater spin-up between the birth line and the ZAMS; and (3) a morepronounced maximum in the birth line radius-mass relationship thatresults in differentially greater spin-up for stars that become mid- tolate-B stars on the ZAMS.

Metallicity of mono- and multiperiodic β Cephei stars
Analyzing IUE ultraviolet spectra of β Cep pulsating stars wenoticed that multiperiodic variables have a larger mean metal abundancein the photosphere, [ m/H] , than monoperiodic ones. We applystatistical tests to verify this dichotomy. We obtain that, with a largeprobability, the multiperiodic β Cep stars have greater values of [m/H] . This result is consistent with the linear non-adiabatic theory ofpulsation of early B-type stars.

Metallicities of the β Cephei stars from low-resolution ultraviolet spectra
We derive basic stellar parameters (angular diameters, effectivetemperatures, metallicities) and interstellar reddening for all βCephei stars observed during the IUE satellite mission, including thosebelonging to three open clusters. The parameters are derived by means ofan algorithmic procedure of fitting theoretical flux distributions tothe low-resolution IUE spectra and ground-based spectrophotometricobservations. Since the metallicity has a special importance forpulsating B-type stars, we focus our attention in particular on thisparameter.Tables 1, 2, 4 and 5 are only available in electronic form athttp://www.edpsciences.org

Asteroseismology with robotic telescopes
Asteroseismology explores the interior of pulsating stars by analysingtheir normal mode spectrum. The detection of a sufficient number ofpulsation modes for seismic modelling of main sequence variablesrequires large quantities of high-precision time resolved photometry.Robotic telescopes have become an asset for asteroseismology because oftheir stable instrumentation, cost- and time-efficient operation and thepotentially large amounts of observing time available. We illustratethese points by presenting selected results on several types ofpulsating variables, such as δ Scuti stars (main sequence andpre-main sequence), γ Doradus stars, rapidly oscillating Ap starsand β Cephei stars, thereby briefly reviewing recent successstories of asteroseismic studies of main sequence stars.

Statistics of the Instability Strip of β Cephei Stars
We present a study of the β Cephei instability strip based on asample of 49 stars of this type. After deriving their effectivetemperatures and luminosities from their observed (B-V), (U-B) colorsand parallaxes we find their positions in the HR diagram to be mostlyconfined to the main sequence, and their masses to lie between 7Mȯ and 30 Mȯ. Their distribution on theHR diagram matches well with our previous theoretical instability stripwhich has an upper bound in the luminosity and rather tight boundariesin the effective temperature.

High-Resolution Observations of Interstellar Ca I Absorption-Implications for Depletions and Electron Densities in Diffuse Clouds
We present high-resolution (FWHM~0.3-1.5 km s-1) spectra,obtained with the AAT UHRF, the McDonald Observatory 2.7 m coudéspectrograph, and/or the KPNO coudé feed, of interstellar Ca Iabsorption toward 30 Galactic stars. Comparisons of the column densitiesof Ca I, Ca II, K I, and other species-for individual componentsidentified in the line profiles and also when integrated over entirelines of sight-yield information on relative electron densities anddepletions (dependent on assumptions regarding the ionizationequilibrium). There is no obvious relationship between the ratio N(CaI)/N(Ca II) [equal to ne/(Γ/αr) forphotoionization equilibrium] and the fraction of hydrogen in molecularform f(H2) (often taken to be indicative of the local densitynH). For a smaller sample of sight lines for which thethermal pressure (nHT) and local density can be estimated viaanalysis of the C I fine-structure excitation, the average electrondensity inferred from C, Na, and K (assuming photoionizationequilibrium) seems to be independent of nH andnHT. While the electron density (ne) obtained fromthe ratio N(Ca I)/N(Ca II) is often significantly higher than the valuesderived from other elements, the patterns of relative nederived from different elements show both similarities and differencesfor different lines of sight-suggesting that additional processesbesides photoionization and radiative recombination commonly andsignificantly affect the ionization balance of heavy elements in diffuseinterstellar clouds. Such additional processes may also contribute tothe (apparently) larger than expected fractional ionizations(ne/nH) found for some lines of sight withindependent determinations of nH. In general, inclusion of``grain-assisted'' recombination does reduce the inferred ne,but it does not reconcile the ne estimated from differentelements; it may, however, suggest some dependence of ne onnH. The depletion of calcium may have a much weakerdependence on density than was suggested by earlier comparisons with CHand CN. Two appendices present similar high-resolution spectra of Fe Ifor a few stars and give a compilation of column density data for Ca I,Ca II, Fe I, and S I.

Formation scenarios for the young stellar associations between galactic longitudes l = 280degr - 360degr
We investigate the spatial distribution, the space velocities and agedistribution of the pre-main sequence (PMS) stars belonging toOphiuchus, Lupus and Chamaeleon star-forming regions (SFRs), and of theyoung early-type star members of the Scorpius-Centaurus OB association.These young stellar associations extend over the galactic longituderange from 280degr to 360degr , and are at a distance interval ofaround 100 and 200 pc. This study is based on a compilation ofdistances, proper motions and radial velocities from the literature forthe kinematic properties, and of basic stellar data for the constructionof Hertzsprung-Russel diagrams. Although there was no well-known OBassociation in Chamaeleon, the distances and the proper motions of agroup of 21 B- and A-type stars, taken from the Hipparcos Catalogue,lead us to propose that they form a young association. We show that theyoung early-type stars of the OB associations and the PMS stars of theSFRs follow a similar spatial distribution, i.e., there is no separationbetween the low and the high-mass young stars. We find no difference inthe kinematics nor in the ages of these two populations studied.Considering not only the stars selected by kinematic criteria but thewhole sample of young early-type stars, the scattering of their propermotions is similar to that of the PMS stars and all the young starsexhibit a common direction of motion. The space velocities of theHipparcos PMS stars of each SFR are compatible with the mean values ofthe OB associations. The PMS stars in each SFR span a wide range of ages(from 1 to 20 Myr). The ages of the OB subgroups are 8-10 Myr for UpperScorpius (US), and 16-20 Myr for Upper Centaurus Lupus (UCL) and forLower Centaurus Crux (LCC). Thus, our results do not confirm that UCL isolder than the LCC association. Based on these results and theuncertainties associated with the age determination, we cannot say thatthere is indeed a difference in the age of the two populations. Weanalyze the different scenarios for the triggering of large-scalestar-formation that have been proposed up to now, and argue that mostprobably we are observing a spiral arm that passes close to the Sun. Thealignment of young stars and molecular clouds and the average velocityof the stars in the opposite direction to the Galactic rotation agreewith the expected behavior of star formation in nearby spiral arms.Tables 1 to 4 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/404/913

On the behavior of the Cii 4267.261, 6578.052 and 6582.882 Å lines in chemically peculiar and standard stars
With the aim of investigating the possible particular behavior of carbonin a sample of chemically peculiar stars of the main sequence withoutturning to modeling, we performed spectroscopic observations of threeimportant and usually prominent single ionized carbon lines: 4267.261,6578.052 and 6582.882 Å. In addition, we observed a large numberof standard stars in order to define a kind of normality strip, usefulfor comparing the observed trend for the peculiar stars. We paidparticular attention to the problem of the determination of fundamentalatmospheric parameters, especially for the chemically peculiar stars forwhich the abundance anomalies change the flux distribution in such a waythat the classical photometric methods to infer effective temperaturesand gravities parameter cannot be applied. Regarding CP stars, we founda normal carbon abundance in Hg-Mn, Si (with some exceptions) and Hestrong stars. He weak stars are normal too, but with a large spread outof the data around the mean value. A more complicated behavior has beennoted in the group of SrCrEu stars: four out of seven show a strongoverabundance, being the others normal.

Rotational Velocities of B Stars
We measured the projected rotational velocities of 1092 northern B starslisted in the Bright Star Catalogue (BSC) and calibrated them againstthe 1975 Slettebak et al. system. We found that the published values ofB dwarfs in the BSC average 27% higher than those standards. Only 0.3%of the stars have rotational velocities in excess of two-thirds of thebreakup velocities, and the mean velocity is only 25% of breakup,implying that impending breakup is not a significant factor in reducingrotational velocities. For the B8-B9.5 III-V stars the bimodaldistribution in V can be explained by a set of slowly rotating Ap starsand a set of rapidly rotating normal stars. For the B0-B5 III-V starsthat include very few peculiar stars, the distributions in V are notbimodal. Are the low rotational velocities of B stars due to theoccurrence of frequent low-mass companions, planets, or disks? Therotational velocities of giants originating from late B dwarfs areconsistent with their conservation of angular momentum in shells.However, we are puzzled by why the giants that originate from the earlyB dwarfs, despite having 3 times greater radii, have nearly the samerotational velocities. We find that all B-type primaries in binarieswith periods less than 2.4 days have synchronized rotational and orbitalmotions; those with periods between 2.4 and 5.0 days are rotating withina factor 2 of synchronization or are ``nearly synchronized.'' Thecorresponding period ranges for A-type stars are 4.9 and 10.5 days, ortwice as large. We found that the rotational velocities of the primariesare synchronized earlier than their orbits are circularized. The maximumorbital period for circularized B binaries is 1.5 days and for Abinaries is 2.5 days. For stars of various ages from 107.5 to1010.2 yr the maximum circularized periods are a smoothexponential function of age.

The mass ratio distribution of B-type visual binaries in the Sco OB2 association
A sample of 115 B-type stars in the Sco OB2 association is examined forexistence of visual companions in the J and K_s bands, using the ADONISnear-infrared adaptive optics system and coronograph. Practically allthe components in the separation range 0farcs3 -6farcs4 (45-900 AU) andmagnitudes down to K = 16 were detected. The K and J - K photometry ofthe primaries and differential photometry and astrometry of the 96secondaries are presented. Ten secondaries are new physical components,as inferred from the photometric and statistical criteria, while therest of the newly detected objects are faint background stars. After asmall correction for detection incompleteness and a conversion of thefluxes into masses, an unbiased distribution of the components massratio q was derived. The power law f(q)~ q-0.5 fits theobservations well, whereas a q-1.8 distribution, whichcorresponds to a random pairing of stars, is rejected. The companionstar fraction is 0.20+/-0.04 per decade of separation which iscomparable to the highest measured binary fraction among low-mass PMSstars and ~ 1.6 times higher than the binary fraction of low-mass dwarfsin the solar neighborhood and in open clusters in the same separationrange. Based on observations collected at the European SouthernObservatory, La Silla, Chile (ESO programme 65.H-0179). Tables 1, 3 andthe full version of Table 2 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/382/92

Multiperiodicities from the Hipparcos epoch photometry and possible pulsation in early A-type stars
A selection criterion based on the relative strength of the largestpeaks in the amplitude spectra, and an information criterion are used incombination to search for multiperiodicities in Hipparcos epochphotometry. The method is applied to all stars which have beenclassified as variable in the Hipparcos catalogue: periodic, unsolvedand microvariables. Results are assessed critically: although there aremany problems arising from aliasing, there are also a number ofinteresting frequency combinations which deserve further investigation.One such result is the possible occurrence of multiple periods of theorder of a day in a few early A-type stars. The Hipparcos catalogue alsocontains a number of these stars with single periodicities: such starswith no obvious variability classifications are listed, and informationabout their properties (e.g., radial velocity variations) discussed.These stars may constitute a new class of pulsators.

Far-Ultraviolet Spectra of B Stars near the Ecliptic
Spectra of B stars in the wavelength range of 911-1100 Å have beenobtained with the Espectrógrafo Ultravioleta de RadiaciónDifusa (EURD) spectrograph on board the Spanish satellite MINISAT-01with ~5 Å spectral resolution. International Ultraviolet Explorer(IUE) spectra of the same stars have been used to normalize Kuruczmodels to the distance, reddening, and spectral type of thecorresponding star. The comparison of eight main-sequence stars studiedin detail (α Vir, ɛ Tau, λ Tau, τ Tau, αLeo, ζ Lib, θ Oph, and σ Sgr) shows agreement withKurucz models, but observed fluxes are 10%-40% higher than the models inmost cases. The difference in flux between observations and models ishigher in the wavelength range between Lyα and Lyβ. Wesuggest that Kurucz models underestimate the far-ultraviolet (FUV) fluxof main-sequence B stars between these two Lyman lines. Computation offlux distributions of line-blanketed model atmospheres including non-LTEeffects suggests that this flux underestimate could be due to departuresfrom LTE, although other causes cannot be ruled out. We found that thecommon assumption of solar metallicity for young disk stars should bemade with care, since small deviations can have a significant impact onFUV model fluxes. Two peculiar stars (ρ Leo and ɛ Aqr) and twoemission-line stars (ɛ Cap and π Aqr) were also studied. Ofthese, only ɛ Aqr has a flux in agreement with the models. The resthave strong variability in the IUE range and/or uncertain reddening,which makes the comparison with models difficult. Based on thedevelopment and utilization of the Espectrógrafo Ultravioleta deRadiación Difusa, a collaboration of the Spanish InstitutoNacional de Técnica Aeroespacial and the Center for EUVAstrophysics, University of California, Berkeley.

EURD: The Mission and the Stellar Absolute Fluxes of B-Type Stars
We present here stellar spectra of B stars obtained with the EURDspectrograph, one of the three instruments on board MINISAT-01. EURD isa spectrograph specially designed to detect diffuse radiation in thewavelength range between 350 and 1100 Å with 5 Å spectralresolution. EURD main scientific targets are: the spectrum ofinterstellar medium, atmospheric airglow, decaying neutrinos, Moon andearly type stars.

Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics
The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521

Infrared spectral classification of OB stars with ISO-SWS
We present observations of the Bralpha , Brbeta and Pfalpha lines of 16dwarf and (sub)giant stars in the spectral range O9-B3. The observationswere done using the Short Wavelength Spectrometer on board the InfraredSpace Observatory, and have a signal-to-noise of ~ 20 to > 150 and aresolving power varying from ~ 1400 to 2100. We compare the equivalentwidths of these lines with predictions using non-LTE model atmospheresto investigate to what extent these infrared lines can be used to deriveeffective temperatures. We find that Pfalpha is a sensitive T_effdiagnostic for the range of spectral types investigated, and Bralpha fortypes O9-B2, yielding agreement with optical results to within 1-4 kK orone-three spectral sub-types. We find evidence for a gradient in theturbulent velocity, increasing from la 5 km s-1 for theatmospheric region in which Bralpha is formed to ~ 15 km s-1for the regime where Pfalpha originates. When this gradient in turbulentvelocity is taken into account, the accuracy of the spectral typecalibration is improved to ~ 1 kK or one spectral sub-type. The gravitydependence of the strengths of the investigated infrared lines isrelatively weak, and could not be used to constrain luminosity class.This failure is in part a result of the modest S/N and resolution and inpart a result of a cancelation of gravity effects in the line core andline wing. Our line predictions show that Hei lambda 2.058 is relativelyunsuited for spectral classification of O9-B3 stars. Hualpha , however,is expected to be an even better diagnostic as are Pfalpha and Bralpha .This line may be observed with the VLT Imager and Spectrometer for midInfraRed when it is installed on the Very Large Telescope.

The proper motions of fundamental stars. I. 1535 stars from the Basic FK5
A direct combination of the positions given in the HIPPARCOS cataloguewith astrometric ground-based catalogues having epochs later than 1939allows us to obtain new proper motions for the 1535 stars of the BasicFK5. The results are presented as the catalogue Proper Motions ofFundamental Stars (PMFS), Part I. The median precision of the propermotions is 0.5 mas/year for mu alpha cos delta and 0.7mas/year for mu delta . The non-linear motions of thephotocentres of a few hundred astrometric binaries are separated intotheir linear and elliptic motions. Since the PMFS proper motions do notinclude the information given by the proper motions from othercatalogues (HIPPARCOS, FK5, FK6, etc.) this catalogue can be used as anindependent source of the proper motions of the fundamental stars.Catalogue (Table 3) is only available at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strastg.fr/cgi-bin/qcat?J/A+A/365/222

NANTEN Observations of the Pipe Nebula; A Filamentary Massive Dark Cloud with Very Low Star-Formation Activity
We present molecular line observations toward the ``Pipe Nebula'' in theJ = 1-0 lines of 12CO, 13CO, and C18Oby using ``NANTEN'' telescope. An area of ~ 27 deg2 wascovered at a 4' grid spacing with a 2.7' beam in 12CO. The12CO velocity-integrated intensity map and channel maps showa filamentary distribution. The total mass of the 12CO- and13CO-emitting gas is estimated to be ~ 10000 MO and ~ 3000 MO, respectively. We have identified 14 C18O cores whose massis typically ~ 30 MO . Star formation is active only in the B 59 region.This activity is best demonstrated by a newly detected CO outflow towardthe center of B 59. We suggest that the dynamical effects of tau Sco maybe responsible for triggering star formation only in the B 59 region.The C18O column density toward B 59 is extremely highcompared with the rest of the cloud. This confirms that highC18O column density is a necessary condition of starformation as previously suggested. Although the star-formationefficiency is estimated to be quite low, <~ 0.1%, except for B 59,the existence of the C18O cores suggests that there ismolecular gas that is massive and dense enough to form stars, and thatstar formation is likely to occur in the near future.

Five-colour photometry of OB-stars in the Southern Hemisphere
Observations of OB-stars, made in 1959 and 1960 at the Leiden SouthernStation near Hartebeespoortdam, South Africa, with the VBLUW photometerattached to the 90 cm light-collector, are given in this paper. They arecompared with photometry obtained by \cite[Graham (1968),]{gra68}\cite[Walraven & Walraven (1977),]{wal77} \cite[Lub & Pel(1977)]{lub77} and \cite[Van Genderen et al. (1984).]{gen84} Formulaefor the transformation of the present observations to those of\cite[Walraven & Walraven (1977)]{wal77} and \cite[Lub & Pel(1977)]{lub77} are given. Table 4 is only available in electronic format the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) orvia http://cdsweb.u-strasbg.fr/Abstract.html

On the evolution of moving groups: an application to the Pleiades moving group
The disruption of stellar systems, such as open clusters or stellarcomplexes, stands out as one of the most reasonable physical processesaccounting for the young moving groups observed in the solarneighbourhood. In the present study we analyse some of the mechanismsthat are important in the kinematic evolution of a group of unboundstars, such as the focusing phenomenon and its ability to recover theobserved moving group's velocity dispersions, and the efficiency of discheating and galactic differential rotation in disrupting unbound stellarsystems. Our main tools used to perform this analysis are both theepicycle theory and the integration of the equations of motion using arealistic gravitational potential of the Galaxy. The study of thetrajectories followed by stars in each of the Pleiades moving groupsubstructures found by Asiain et al. _ote*{asiain2} allows usto determine their stellar spatial and velocity distribution evolution.The kinematic properties of these substructures are compared to those ofa simulated stellar complex which has evolved under the influence of thegalactic gravitational potential and the disc heating. We conclude thata constant diffusion coefficient compatible with the observationalheating law is able to explain the velocity and spatial dispersions ofthe Pleiades moving group substructures that are younger than sigmaim1.5 * 10(8) yr.

On the normal spectral energy distribution of stars: Spectral types O9-B5
The normal energy distributions for fifteen spectral subtypes from O9 toB5 for luminosity classes V, IV, and III are derived. Threephotometrically uniform catalogs served as the source of thespectrophotometric data used. Synthetic color indices for all spectraltypes are calculated using the energy distribution curves obtained.Comparison of these indices with the expected normal color indicessuggests that the energy distributions derived are reliable.

The Scorpius OB2 Complex
The Sco OB2 complex is a member of the Local Association. Theassociation contains pre-main-sequence stars in addition to objects some3 x 10^7 yr old. If it is assumed that stars in wide binaries arecoeval, then the He-weak variables in the supercluster arepre-main-sequence, elevated above that sequence by an amount similar tothat of the 3 x 10^7 yr old, normal stars but contracting toward thesequence, not evolving from it. The apparent great depth of theassociation is probably a result of some foreground superclustermembers, superposed on Sco OB2, and a rift in the absorption cloudbetween Scorpius and Ophiuchus. The adjoining Chamaeleon complex alsoappears to be a member of the supercluster.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Schlangenträger
Right ascension:17h22m00.60s
Declination:-24°59'58.0"
Apparent magnitude:3.27
Distance:172.712 parsecs
Proper motion RA:0
Proper motion Dec:0
B-T magnitude:3.009
V-T magnitude:3.212

Catalogs and designations:
Proper NamesImad
  (Edit)
Bayerθ Oph
Flamsteed42 Oph
HD 1989HD 157056
TYCHO-2 2000TYC 6829-577-1
USNO-A2.0USNO-A2 0600-26361056
BSC 1991HR 6453
HIPHIP 84970

→ Request more catalogs and designations from VizieR