Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

HD 78366



Upload your image

DSS Images   Other Images

Related articles

Dwarfs in the Local Region
We present lithium, carbon, and oxygen abundance data for a sample ofnearby dwarfs-a total of 216 stars-including samples within 15 pc of theSun, as well as a sample of local close giant planet (CGP) hosts (55stars) and comparison stars. The spectroscopic data for this work have aresolution of R~60,000, a signal-to-noise ratio >150, and spectralcoverage from 475 to 685 nm. We have redetermined parameters and derivedadditional abundances (Z>10) for the CGP host and comparison samples.From our abundances for elements with Z>6 we determine the meanabundance of all elements in the CGP hosts to range from 0.1 to 0.2 dexhigher than nonhosts. However, when relative abundances ([x/Fe]) areconsidered we detect no differences in the samples. We find nodifference in the lithium contents of the hosts versus the nonhosts. Theplanet hosts appear to be the metal-rich extension of local regionabundances, and overall trends in the abundances are dominated byGalactic chemical evolution. A consideration of the kinematics of thesample shows that the planet hosts are spread through velocity space;they are not exclusively stars of the thin disk.

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

Predicting the Length of Magnetic Cycles in Late-Type Stars
In this paper we present a modification of a local approximation of theso-called interface dynamo in an attempt to reproduce the length of themagnetic cycles for a sample of late-type stars. The sample consists of25 stars, observed during the Mount Wilson and Las Campanas long-termmonitoring campaigns, for which well-defined cycles have been detected.We have focused our efforts on reproducing general trends observed,namely, the dependence of the cycle length, Pcyc, on thestellar rotation period, Prot, rather than attempting toinfer from the dynamo model individual cycle lengths for each star. Inspite of the simplicity of the model, the results are promising. Thetrend of increasing cycle length with increasing rotation period isreproduced with a minimum of assumptions.

The Planet-Metallicity Correlation
We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.

Stellar activity cycles: observing the dynamo?
The enormous complexity of the atmospheric structure observed on the Sunmakes it very difficult to compare the Sun with ``solar-type stars''.Clearly, we need to identify parameters that can be observed on the Sunas well as on other stars which can be interpreted unambiguously. Themost widely accepted dynamo signature is the presence of an activitycycle, well documented for the Sun and for main-sequence stars due tothe Mount Wilson Ca II H&K project. Only recently have we detectedspatial information, differential rotation and possibly meridional flowson other stars and thereby adding another constraint for itsinterpretation within a dynamo theory. Again, the picture is notcomplete yet, despite that there is just a single main ingredient thatacts as the driving mechanism for activity in all atmospheric layers andthe convective envelope of a solar-type star: the dynamo-relatedmagnetic field. I stress the importance of mapping stellar surfaces asfingerprints of the underlying dynamo action over long periods of time.

Mg II chromospheric radiative loss rates in cool active and quiet stars
The Mg II k emission line is a good indicator of the level ofchromospheric activity in late-type stars. We investigate the dependenceof this activity indicator on fundamental stellar parameters. To thispurpose we use IUE observations of the Mg II k line in 225 late-typestars of luminosity classes I-V, with different levels of chromosphericactivity. We first re-analyse the relation between Mg II k lineluminosity and stellar absolute magnitude, performing linear fits to thepoints. The ratio of Mg II surface flux to total surface flux is foundto be independent of stellar luminosity for evolved stars and toincrease with decreasing luminosity for dwarfs. We also analyse the MgII k line surface flux-metallicity connection. The Mg II k emissionlevel turns out to be not dependent on metallicity. Finally, the Mg II kline surface flux-temperature relation is investigated by treatingseparately, for the first time, a large sample of very active and normalstars. The stellar surface fluxes in the k line of normal stars arefound to be strongly dependent on the temperature and slightly dependenton the gravity, thus confirming the validity of recently proposedmodels. In contrast, data relative to RS CVn binaries and BY Dra stars,which show very strong chromospheric activity, are not justified in theframework of a description based only on acoustic waves and uniformlydistributed magnetic flux tubes so that they require more detailedmodels.

The Correlation of Lithium and Beryllium in F and G Field and Cluster Dwarf Stars
Although Li has been extensively observed in main-sequence field andcluster stars, there are relatively fewer observations of Be. We haveobtained Keck HIRES spectra of 36 late F and early G dwarfs in order tostudy the Li-Be correlation we found previously in the temperatureregime of 5900-6650 K. The sample size for this temperature range withdetectable and (usually) depleted Li and Be is now 88, including Li andBe abundances in both cluster and field stars. Therefore we can nowinvestigate the influence of other parameters such as age, temperature,and metallicity on the correlation. The Be spectra at 3130 Å weretaken over six nights from 1999 November to 2002 January and have aspectral resolution of ~48,000 and a median signal-to-noise ratio (S/N)of 108 pixel-1. We obtained Li spectra of 22 stars with theUniversity of Hawaii 88 inch (2.2 m) telescope and coudéspectrograph with a spectral resolution of ~70,000 and a median S/N of110 pixel-1. We have redetermined the effective temperaturesfor all the stars and adopted other parameters from published data orempirical relations. The abundances of both Li and Be in the stars weobserved were determined from spectrum synthesis with MOOG 2002. Thepreviously observed Li equivalent widths for some of our Be stars wereused with the new temperatures and MOOG 2002 in the ``blends'' mode. Forthe 46 field stars from this and earlier studies we find a linearrelation between A(Li) and A(Be) with a slope of 0.375+/-0.036. Over theTeff range 5900-6650 K, we find the modest scatter about theBe-Li relation to be significantly correlated with Teff andperhaps also [Fe/H]. Dividing the sample into two temperature regimes of6300-6650 K (corresponding to the cool side of the Li-Be dip) and5900-6300 K (corresponding to the Li ``plateau'') reveals possible smalldifferences in the slopes for the two groups, 0.404+/-0.034 and0.365+/-0.049, respectively. When we include the cluster stars (Hyades,Pleiades, Praesepe, UMa Group, and Coma), the slope for the fulltemperature range (88 stars) is essentially the same, at 0.382+/-0.030,as for the field stars alone. For the hotter temperature group of 35Li-Be dip stars in the field and in clusters the slope is higher, at0.433+/-0.036, while for the cooler star group (54 stars) the slope is0.337+/-0.031, different by more than 1 σ. This small differencein the slope is predicted by the theory of rotationally induced mixing.The four stars with [Fe/H] less than -0.4 are all below the best-fitrelation, i.e., there is more Be depletion at a given A(Li) or less Beab initio. The youngest stars, i.e., Pleiades, have less depletion ofboth Li and Be. This too is predicted by rotationally induced slowmixing. Combining the Be results from both field and cluster stars, wefind that there are stars with undepleted Be, i.e., near the meteoriticvalues of 1.42 dex, at all temperatures from 5500 to 6800 K. Depletionsof Be of up to and even exceeding 2 orders of magnitude are commonbetween 6000 and 6700 K.

Nearby stars of the Galactic disk and halo. III.
High-resolution spectroscopic observations of about 150 nearby stars orstar systems are presented and discussed. The study of these and another100 objects of the previous papers of this series implies that theGalaxy became reality 13 or 14 Gyr ago with the implementation of amassive, rotationally-supported population of thick-disk stars. The veryhigh star formation rate in that phase gave rise to a rapid metalenrichment and an expulsion of gas in supernovae-driven Galactic winds,but was followed by a star formation gap for no less than three billionyears at the Sun's galactocentric distance. In a second phase, then, thethin disk - our ``familiar Milky Way'' - came on stage. Nowadays ittraces the bright side of the Galaxy, but it is also embedded in a hugecoffin of dead thick-disk stars that account for a large amount ofbaryonic dark matter. As opposed to this, cold-dark-matter-dominatedcosmologies that suggest a more gradual hierarchical buildup throughmergers of minor structures, though popular, are a poor description forthe Milky Way Galaxy - and by inference many other spirals as well - if,as the sample implies, the fossil records of its long-lived stars do notstick to this paradigm. Apart from this general picture that emergeswith reference to the entire sample stars, a good deal of the presentwork is however also concerned with detailed discussions of manyindividual objects. Among the most interesting we mention the bluestraggler or merger candidates HD 165401 and HD 137763/HD 137778, thelikely accretion of a giant planet or brown dwarf on 59 Vir in itsrecent history, and HD 63433 that proves to be a young solar analog at\tau˜200 Myr. Likewise, the secondary to HR 4867, formerly suspectednon-single from the Hipparcos astrometry, is directly detectable in thehigh-resolution spectroscopic tracings, whereas the visual binary \chiCet is instead at least triple, and presumably even quadruple. Withrespect to the nearby young stars a complete account of the Ursa MajorAssociation is presented, and we provide as well plain evidence foranother, the ``Hercules-Lyra Association'', the likely existence ofwhich was only realized in recent years. On account of its rotation,chemistry, and age we do confirm that the Sun is very typical among itsG-type neighbors; as to its kinematics, it appears however not unlikelythat the Sun's known low peculiar space velocity could indeed be thecause for the weak paleontological record of mass extinctions and majorimpact events on our parent planet during the most recent Galactic planepassage of the solar system. Although the significance of thiscorrelation certainly remains a matter of debate for years to come, wepoint in this context to the principal importance of the thick disk fora complete census with respect to the local surface and volumedensities. Other important effects that can be ascribed to this darkstellar population comprise (i) the observed plateau in the shape of theluminosity function of the local FGK stars, (ii) a small thoughsystematic effect on the basic solar motion, (iii) a reassessment of theterm ``asymmetrical drift velocity'' for the remainder (i.e. the thindisk) of the stellar objects, (iv) its ability to account for the bulkof the recently discovered high-velocity blue white dwarfs, (v) itsmajor contribution to the Sun's ˜220 km s-1 rotationalvelocity around the Galactic center, and (vi) the significant flatteningthat it imposes on the Milky Way's rotation curve. Finally we note ahigh multiplicity fraction in the small but volume-complete local sampleof stars of this ancient population. This in turn is highly suggestivefor a star formation scenario wherein the few existing single stellarobjects might only arise from either late mergers or the dynamicalejection of former triple or higher level star systems.

Chemical enrichment and star formation in the Milky Way disk. III. Chemodynamical constraints
In this paper, we investigate some chemokinematical properties of theMilky Way disk, by using a sample composed by 424 late-type dwarfs. Weshow that the velocity dispersion of a stellar group correlates with theage of this group, according to a law proportional to t0.26,where t is the age of the stellar group. The temporal evolution of thevertex deviation is considered in detail. It is shown that the vertexdeviation does not seem to depend strongly on the age of the stellargroup. Previous studies in the literature seem to not have found it dueto the use of statistical ages for stellar groups, rather thanindividual ages. The possibility to use the orbital parameters of a starto derive information about its birthplace is investigated, and we showthat the mean galactocentric radius is likely to be the most reliablestellar birthplace indicator. However, this information cannot bepresently used to derive radial evolutionary constraints, due to anintrinsic bias present in all samples constructed from nearby stars. Anextensive discussion of the secular and stochastic heating mechanismscommonly invoked to explain the age-velocity dispersion relation ispresented. We suggest that the age-velocity dispersion relation couldreflect the gradual decrease in the turbulent velocity dispersion fromwhich disk stars form, a suggestion originally made by Tinsley &Larson (\cite{tinsley}, ApJ, 221, 554) and supported by several morerecent disk evolution calculations. A test to distinguish between thetwo types of models using high-redshift galaxies is proposed.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/423/517

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 Parsecs: The Northern Sample. I.
We have embarked on a project, under the aegis of the Nearby Stars(NStars)/Space Interferometry Mission Preparatory Science Program, toobtain spectra, spectral types, and, where feasible, basic physicalparameters for the 3600 dwarf and giant stars earlier than M0 within 40pc of the Sun. In this paper, we report on the results of this projectfor the first 664 stars in the northern hemisphere. These resultsinclude precise, homogeneous spectral types, basic physical parameters(including the effective temperature, surface gravity, and overallmetallicity [M/H]), and measures of the chromospheric activity of ourprogram stars. Observed and derived data presented in this paper arealso available on the project's Web site.

Abundance Analysis of Planetary Host Stars. I. Differential Iron Abundances
We present atmospheric parameters and iron abundances derived fromhigh-resolution spectra for three samples of dwarf stars: stars that areknown to host close-in giant planets (CGP), stars for which radialvelocity data exclude the presence of a close-in giant planetarycompanion (no-CGP), as well as a random sample of dwarfs with a spectraltype and magnitude distribution similar to that of the planetary hoststars (control). All stars have been observed with the same instrumentand have been analyzed using the same model atmospheres, atomic data,and equivalent width modeling program. Abundances have been deriveddifferentially to the Sun, using a solar spectrum obtained with Callistoas the reflector with the same instrumentation. We find that the ironabundances of CGP dwarfs are on average 0.22 dex greater than that ofno-CGP dwarfs. The iron abundance distributions of both the CGP andno-CGP dwarfs are different than that of the control dwarfs, while thecombined iron abundances have a distribution that is very similar tothat of the control dwarfs. All four samples (CGP, no-CGP, combined, andcontrol) have different effective temperature distributions. We showthat metal enrichment occurs only for CGP dwarfs with temperatures justbelow solar and ~300 K higher than solar, whereas the abundancedifference is insignificant at Teff around 6000 K.

The Hamburg/RASS Catalogue of optical identifications. Northern high-galactic latitude ROSAT Bright Source Catalogue X-ray sources
We present the Hamburg/RASS Catalogue (HRC) of optical identificationsof X-ray sources at high-galactic latitude. The HRC includes all X-raysources from the ROSAT Bright Source Catalogue (RASS-BSC) with galacticlatitude |b| >=30degr and declination delta >=0degr . In thispart of the sky covering ~ 10 000 deg2 the RASS-BSC contains5341 X-ray sources. For the optical identification we used blue Schmidtprism and direct plates taken for the northern hemisphere Hamburg QuasarSurvey (HQS) which are now available in digitized form. The limitingmagnitudes are 18.5 and 20, respectively. For 82% of the selectedRASS-BSC an identification could be given. For the rest either nocounterpart was visible in the error circle or a plausibleidentification was not possible. With ~ 42% AGN represent the largestgroup of X-ray emitters, ~ 31% have a stellar counterpart, whereasgalaxies and cluster of galaxies comprise only ~ 4% and ~ 5%,respectively. In ~ 3% of the RASS-BSC sources no object was visible onour blue direct plates within 40\arcsec around the X-ray sourceposition. The catalogue is used as a source for the selection of(nearly) complete samples of the various classes of X-ray emitters.

Multiplicity among solar-type stars. III. Statistical properties of the F7-K binaries with periods up to 10 years
Two CORAVEL radial velocity surveys - one among stars in the solarneighbourhood, the other in the Pleiades and in Praesepe - are merged toderive the statistical properties of main-sequence binaries withspectral types F7 to K and with periods up to 10 years. A sample of 89spectroscopic orbits was finally obtained. Among them, 52 relate to afree-of-bias selection of 405 stars (240 field stars and 165 clusterstars). The statistics corrected for selection effects yield thefollowing results: (1) No discrepancy is found between the binariesamong field stars and the binaries in open cluster. The distributions ofmass ratios, of periods, the period-eccentricity diagram and the binaryfrequencies are all within the same error intervals. (2) Thedistribution of mass ratios presents two maxima: a broad peak from q ~0.2 to q ~ 0.7, and a sharp peak for q > 0.8 (twins). Both arepresent among the early-type as well as among the late-type part of thesample, indicating a scale-free formation process. The peak for q >0.8 gradually decreases when long-period binaries are considered.Whatever their periods, the twins have eccentricities significantlylower than the other binaries, confirming a difference in the formationprocesses. Twins could be generated by in situ formation followed byaccretion from a gaseous envelope, whereas binaries with intermediatemass ratios could be formed at wide separations, but they are madecloser by migration led by interactions with a circumbinary disk. (3)The frequency of binaries with P<10 years is about 14%. (4) About0.3% of binaries are expected to appear as false positives in a planetsearch. Therefore, the frequency of planetary systems among stars ispresently 7+4-2%. The extension of thedistribution of mass ratios in the planetary range would result in avery sharp and very high peak, well separated from the binary stars withlow mass ratios. Based on photoelectric radial-velocity measurementscollected at Haute-Provence observatory and on observations made withthe ESA Hipparcos astrometry satellite.

The stellar activity-rotation relationship revisited: Dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs
We present the results of a new study on the relationship betweencoronal X-ray emission and stellar rotation in late-type main-sequencestars. We have selected a sample of 259 dwarfs in the B-V range 0.5-2.0,including 110 field stars and 149 members of the Pleiades, Hyades, alphaPersei, IC 2602 and IC 2391 open clusters. All the stars have beenobserved with ROSAT, and most of them have photometrically-measuredrotation periods available. Our results confirm that two emissionregimes exist, one in which the rotation period is a good predictor ofthe total X-ray luminosity, and the other in which a constant saturatedX-ray to bolometric luminosity ratio is attained; we present aquantitative estimate of the critical rotation periods below which starsof different masses (or spectral types) enter the saturated regime. Inthis work we have also empirically derived a characteristic time scale,taue , which we have used to investigate the relationshipbetween the X-ray emission level and an X-ray-based Rossby numberRe = Prot/taue: we show that ourempirical time scale taue resembles the theoreticalconvective turnover time for 0.4 <~ M/Msun <~ 1.2, butit also has the same functional dependence on B-V asLbol-1/2 in the color range 0.5 <~ B-V <~1.5. Our results imply that - for non-saturated coronae - theLx - Prot relation is equivalent to theLx/Lbol vs. Re relation. Tables 1 and 2are only available in electronic form at \ http://www.edpsciences.org

Radial Velocities for 889 Late-Type Stars
We report radial velocities for 844 FGKM-type main-sequence and subgiantstars and 45 K giants, most of which had either low-precision velocitymeasurements or none at all. These velocities differ from the standardstars of Udry et al. by 0.035 km s-1 (rms) for the 26 FGKstandard stars in common. The zero point of our velocities differs fromthat of Udry et al.: =+0.053km s-1. Thus, these new velocities agree with the best knownstandard stars both in precision and zero point, to well within 0.1 kms-1. Nonetheless, both these velocities and the standardssuffer from three sources of systematic error, namely, convectiveblueshift, gravitational redshift, and spectral type mismatch of thereference spectrum. These systematic errors are here forced to be zerofor G2 V stars by using the Sun as reference, with Vesta and day sky asproxies. But for spectral types departing from solar, the systematicerrors reach 0.3 km s-1 in the F and K stars and 0.4 kms-1 in M dwarfs. Multiple spectra were obtained for all 889stars during 4 years, and 782 of them exhibit velocity scatter less than0.1 km s-1. These stars may serve as radial velocitystandards if they remain constant in velocity. We found 11 newspectroscopic binaries and report orbital parameters for them. Based onobservations obtained at the W. M. Keck Observatory, which is operatedjointly by the University of California and the California Institute ofTechnology, and on observations obtained at the Lick Observatory, whichis operated by the University of California.

A new look at dynamo cycle amplitudes
We explore the dependence of the amplitude of stellar dynamo cyclevariability (as seen in the Mount Wilson Ca II HK timeseries data) onother stellar parameters. We find that the fractional cycle amplitudeA_cyc (i.e. the ratio of the peak-to-peak variation to the average)decreases somewhat with mean activity, increases with decreasingeffective temperature, but is not correlated with inverse Rossby numberRo-1. We find that A_cyc increases with the ratio of cycleand rotational frequencies omega_cyc /Omega along two, nearly parallelbranches.

HIPPARCOS age-metallicity relation of the solar neighbourhood disc stars
We derive age-metallicity relations (AMRs) and orbital parameters forthe 1658 solar neighbourhood stars to which accurate distances aremeasured by the HIPPARCOS satellite. The sample stars comprise 1382 thindisc stars, 229 thick disc stars, and 47 halo stars according to theirorbital parameters. We find a considerable scatter for thin disc AMRalong the one-zone Galactic chemical evolution (GCE) model. Orbits andmetallicities of thin disc stars show now clear relation each other. Thescatter along the AMR exists even if the stars with the same orbits areselected. We examine simple extension of one-zone GCE models whichaccount for inhomogeneity in the effective yield and inhomogeneous starformation rate in the Galaxy. Both extensions of the one-zone GCE modelcannot account for the scatter in age - [Fe/H] - [Ca/Fe] relationsimultaneously. We conclude, therefore, that the scatter along the thindisc AMR is an essential feature in the formation and evolution of theGalaxy. The AMR for thick disc stars shows that the star formationterminated 8 Gyr ago in the thick disc. As already reported by Grattonet al. (\cite{Gratton_et.al.2000}) and Prochaska et al.(\cite{Prochaska_et.al.2000}), thick disc stars are more Ca-rich thanthin disc stars with the same [Fe/H]. We find that thick disc stars showa vertical abundance gradient. These three facts, the AMR, verticalgradient, and [Ca/Fe]-[Fe/H] relation, support monolithic collapseand/or accretion of satellite dwarf galaxies as likely thick discformation scenarios. Tables 2 and 3 are only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr ( via http:/ /cdsweb.u-strasbg.fr/ cgi-bin/qcat?J/ A+A/394/927

A revision of the solar neighbourhood metallicity distribution
We present a revised metallicity distribution of dwarfs in the solarneighbourhood. This distribution is centred on solar metallicity. Weshow that previous metallicity distributions, selected on the basis ofspectral type, are biased against stars with solar metallicity orhigher. A selection of G-dwarf stars is inherently biased againstmetal-rich stars and is not representative of the solar neighbourhoodmetallicity distribution. Using a sample selected on colour, we obtain adistribution where approximately half the stars in the solarneighbourhood have metallicities higher than [Fe/H]=0. The percentage ofmid-metal-poor stars ([Fe/H]<-0.5) is approximately 4 per cent, inagreement with present estimates of the thick disc. In order to have ametallicity distribution comparable to chemical evolution modelpredictions, we convert the star fraction to mass fraction, and showthat another bias against metal-rich stars affects dwarf metallicitydistributions, due to the colour (or spectral type) limits of thesamples. Reconsidering the corrections resulting from the increasingthickness of the stellar disc with age, we show that the simpleclosed-box model with no instantaneous recycling approximation gives areasonable fit to the observed distribution. Comparisons with theage-metallicity relation and abundance ratios suggest that the simpleclosed-box model may be a viable model of the chemical evolution of theGalaxy at solar radius.

Levels of coronal and chromospheric activity in late-type stars and various types of dynamo waves
We analyze the X-ray emission and chromospheric activity of late-type F,G, and K stars studied in the framework of the HK project. More powerfulcoronas are possessed by stars displaying irregular variations of theirchromospheric emission, while stars with cyclic activity arecharacterized by comparatively modest X-ray luminosities and ratios ofthe X-ray to bolometric luminosity L X/L bol. This indicates that thenature of processes associated with magnetic-field amplification in theconvective envelope changes appreciably in the transition from small tolarge dynamo numbers, directly affecting the character of the(α-Ω) dynamo. Due to the strong dependence of both thedynamo number and the Rossby number on the speed of axial rotation,earlier correlations found between various activity parameters and theRossby number are consistent with our conclusions. Our analysis makes itpossible to draw the first firm conclusions about the place of solaractivity among analogous processes developing in active late-type stars.

On the Wilson-Bappu relationship in the Mg II k line
An investigation is carried out on the Wilson-Bappu effect in the Mg Iik line at 2796.34 Å. The work is based on a selection of 230 starsobserved by both the IUE and HIPPARCOS satellites, covering a wide rangeof spectral types (F to M) and absolute visual magnitudes (-5.4<=MV <=9.0). A semi-automatic procedure is used to measurethe line widths, which applies also in the presence of strong centralabsorption reversal. The Wilson-Bappu relationship here provided isconsidered to represent an improvement over previous recent results forthe considerably larger data sample used, as well as for a properconsideration of the measurement errors. No evidence has been found fora possible dependence of the WB effect on stellar metallicity andeffective temperature.

Sixth Catalogue of Fundamental Stars (FK6). Part III. Additional fundamental stars with direct solutions
The FK6 is a suitable combination of the results of the HIPPARCOSastrometry satellite with ground-based data, measured over a longinterval of time and summarized mainly in the FK5. Part III of the FK6(abbreviated FK6(III)) contains additional fundamental stars with directsolutions. Such direct solutions are appropriate for single stars or forobjects which can be treated like single stars. Part III of the FK6contains in total 3272 stars. Their ground-based data stem from thebright extension of the FK5 (735 stars), from the catalogue of remainingSup stars (RSup, 732 stars), and from the faint extension of the FK5(1805 stars). From the 3272 stars in Part III, we have selected 1928objects as "astrometrically excellent stars", since their instantaneousproper motions and their mean (time-averaged) ones do not differsignificantly. Hence most of the astrometrically excellent stars arewell-behaving "single-star candidates" with good astrometric data. Thesestars are most suited for high-precision astrometry. On the other hand,354 of the stars in Part III are Δμ binaries in the sense ofWielen et al. (1999). Many of them are newly discovered probablebinaries with no other hitherto known indication of binarity. The FK6gives, besides the classical "single-star mode" solutions (SI mode),other solutions which take into account the fact that hidden astrometricbinaries among "apparently single-stars" introduce sizable "cosmicerrors" into the quasi-instantaneously measured HIPPARCOS proper motionsand positions. The FK6 gives, in addition to the SI mode, the "long-termprediction (LTP) mode" and the "short-term prediction (STP) mode". TheseLTP and STP modes are on average the most precise solutions forapparently single stars, depending on the epoch difference with respectto the HIPPARCOS epoch of about 1991. The typical mean error of anFK6(III) proper motion in the single-star mode is 0.59 mas/year. This isa factor of 1.34 better than the typical HIPPARCOS errors for thesestars of 0.79 mas/year. In the long-term prediction mode, in whichcosmic errors are taken into account, the FK6(III) proper motions have atypical mean error of 0.93 mas/year, which is by a factor of about 2better than the corresponding error for the HIPPARCOS values of 1.83mas/year (cosmic errors included).

Observing roAp Stars with WET: A Primer
We give an extensive primer on roAp stars -- introducing them, puttingthem in context and explaining terminology and jargon, and giving athorough discussion of what is known and not known about them. Thisprovides a good understanding of the kind of science WET could extractfrom these stars. We also discuss the many potential pitfalls andproblems in high-precision photometry. Finally, we suggest a WETcampaign for the roAp star HR 1217.

Energy Diagnoses of Nine Infrared Luminous Galaxies Based on 3-4 Micron Spectra
The energy sources of nine infrared luminous galaxies (IRLGs) arediagnosed based on their ground-based 3-4 μm spectra. Both theequivalent width of the 3.3 μm polycyclic aromatic hydrocarbon (PAH)emission feature and the 3.3 μm PAH to far-infrared luminosity ratio(L3.3/LFIR) are analyzed. Assuming that nuclearcompact starburst activity in these sources produces the 3.3 μm PAHemission as strongly as that in starburst galaxies with lowerfar-infrared luminosities, the following results are found. For sixIRLGs, both the observed equivalent widths and theL3.3/LFIR ratios are too small to explain the bulkof their far-infrared luminosities by compact starburst activity,indicating that active galactic nucleus (AGN) activity is a dominantenergy source. For the other three IRLGs, while the 3.3 μm PAHequivalent widths are within the range of starburst galaxies, theL3.3/LFIR ratios after correction for screen dustextinction are a factor of ~3 smaller. The uncertainty in the dustextinction correction factor and in the scatter of the intrinsicL3.3/LFIR ratios for starburst galaxies does notallow a determination of the ultimate energy sources for these threeIRLGs.

The Onset of Methane in L Dwarfs
We have detected weak absorption features produced by the strongν3 methane band at 3.3 μm in two L dwarfs, 2MASSWJ1507476-162738 and 2MASSI J0825196+211552, classified as spectral typesL5 and L7.5, respectively. These absorptions occur in objects warmerthan any in which methane previously has been detected and mark thefirst appearance of methane in the ultracool star-to-brown dwarfspectral sequence.

An IUE Atlas of Pre-Main-Sequence Stars. II. Far-Ultraviolet Accretion Diagnostics in T Tauri Stars
We use our ultraviolet (UV) atlas of pre-main-sequence stars constructedfrom all useful, short-wavelength, low-resolution spectra in theInternational Ultraviolet Explorer (IUE) satellite Final Archive toanalyze the short-wavelength UV properties of 49 T Tauri stars (TTSs).We compare the line and continuum fluxes in these TTSs with each otherand with previously published parameters of these systems, includingrotation rate, infrared excess, and mass accretion rate. Theshort-wavelength continuum in the classical TTSs (CTTSs) appears tooriginate in a ~10,000 K optically thick plasma, while in the naked TTSs(NTTSs-stars without dusty disks) the continuum appears to originate inthe stellar atmosphere. We show that all of the TTSs in our sample liein the regime of ``saturated'' magnetic activity due to their smallRossby numbers. However, while some of the TTSs show emission linesurface fluxes consistent with this saturation level, many CTTSs showsignificantly stronger emission than predicted by saturation. In thesestars, the emission line luminosity in the high ionization lines presentin the spectrum between 1200 and 2000 Å correlates well with themass accretion rate. Therefore, we conclude that the bulk of theshort-wavelength emission seen in CTTSs results from accretion relatedprocesses and not from dynamo-driven magnetic activity. Using CTTSs withknown mass accretion rates, we calibrate the relationship between M andLC IV to derive the mass accretion rate for some CTTSs whichfor various reasons have never had their mass accretion rates measured.Finally, several of the CTTSs show strong emission from molecularhydrogen. While emission from H2 cannot form in gas at atemperature of ~105 K, the strength of the molecular hydrogenemission is nevertheless well correlated with all the other emissionsdisplayed in the IUE short-wavelength bandpass. This suggests that theH2 emission is in fact fluorescent emission pumped by theemission (likely Lyα) from hotter gas.

The ROSAT Bright Survey: II. Catalogue of all high-galactic latitude RASS sources with PSPC countrate CR > 0.2 s-1
We present a summary of an identification program of the more than 2000X-ray sources detected during the ROSAT All-Sky Survey (Voges et al.1999) at high galactic latitude, |b| > 30degr , with countrate above0.2 s-1. This program, termed the ROSAT Bright Survey RBS, isto more than 99.5% complete. A sub-sample of 931 sources with countrateabove 0.2 s-1 in the hard spectral band between 0.5 and 2.0keV is to 100% identified. The total survey area comprises 20391deg2 at a flux limit of 2.4 x 10-12 ergcm-2 s-1 in the 0.5 - 2.0 keV band. About 1500sources of the complete sample could be identified by correlating theRBS with SIMBAD and the NED. The remaining ~ 500 sources were identifiedby low-resolution optical spectroscopy and CCD imaging utilizingtelescopes at La Silla, Calar Alto, Zelenchukskaya and Mauna Kea. Apartfrom completely untouched sources, catalogued clusters and galaxieswithout published redshift as well as catalogued galaxies with unusualhigh X-ray luminosity were included in the spectroscopic identificationprogram. Details of the observations with an on-line presentation of thefinding charts and the optical spectra will be published separately.Here we summarize our identifications in a table which contains opticaland X-ray information for each source. As a result we present the mostmassive complete sample of X-ray selected AGNs with a total of 669members and a well populated X-ray selected sample of 302 clusters ofgalaxies with redshifts up to 0.70. Three fields studied by us remainwithout optical counterpart (RBS0378, RBS1223, RBS1556). While the firstis a possible X-ray transient, the two latter are isolated neutron starcandidates (Motch et al. 1999, Schwope et al. 1999).

The Lick Planet Search: Detectability and Mass Thresholds
We present an analysis of 11 yr of precision radial velocitymeasurements of 76 nearby solar-type stars from the Lick radial velocitysurvey. For each star, we report on variability, periodicity, andlong-term velocity trends. Our sample of stars contains eight knowncompanions with mass (Mpsini) less than 8 Jupiter masses(MJ), six of which were discovered at Lick. For the remainingstars, we place upper limits on the companion mass as a function oforbital period. For most stars, we can exclude companions with velocityamplitude K>~20 m s-1 at the 99% level, orMpsini>~0.7MJ(a/AU)1/2 for orbitalradii a<~5 AU. We examine the implications of our results for theobserved distribution of mass and orbital radius of companions. We showthat the combination of intrinsic stellar variability and measurementerrors most likely explains why all confirmed companions so far haveK>~40 m s-1. The finite duration of the observationslimits detection of Jupiter-mass companions to a<~3 AU. Thus itremains possible that the majority of solar-type stars harborJupiter-mass companions much like our own, and if so these companionsshould be detectable in a few years. It is striking that more massivecompanions with Mpsini>3MJ are rare at orbitalradii 4-6 AU; we could have detected such objects in ~90% of stars, yetfound none. The observed companions show a ``piling-up'' toward smallorbital radii, and there is a paucity of confirmed and candidatecompanions with orbital radii between ~0.2 and ~1 AU. The small numberof confirmed companions means that we are not able to rule out selectioneffects as the cause of these features. We show that the traditionalmethod for detecting periodicities, the Lomb-Scargle periodogram, failsto account for statistical fluctuations in the mean of a sampledsinusoid, making it nonrobust when the number of observations is small,the sampling is uneven, or for periods comparable to or greater than theduration of the observations. We adopt a ``floating-mean'' periodogram,in which the zero point of the sinusoid is allowed to vary during thefit. We discuss in detail the normalization of the periodogram and theprobability distribution of periodogram powers. We stress that the threedifferent prescriptions in the literature for normalizing theperiodogram are statistically equivalent and that it is not possible towrite a simple analytic form for the false alarm probability, makingMonte Carlo methods essential.

Time Evolution of the Magnetic Activity Cycle Period. II. Results for an Expanded Stellar Sample
We further explore nondimensional relationships between the magneticdynamo cycle period P_cyc, the rotational period P_rot, the activitylevel (as observed in Ca II HK), and other stellar properties byexpanding the stellar sample studied in the first paper in this series.We do this by adding photometric and other cycles seen in active starsand the secondaries of CV systems and by selectively adding less certaincycles from the Mount Wilson HK survey; evolved stars, long-term HKtrends and secondary P_cyc are also considered. We confirm that moststars with age t>~0.1 Gyr occupy two roughly parallel branches,separated by a factor of ~6 in P_cyc, with the ratio of cycle androtational frequencies ω_cyc/Ω~Ro^-0.5, where Ro is theRossby number. Using the model of the first paper in this series, thisresult implies that the α effect increases with mean magneticfield (contrary to the traditional α-quenching concept) and thatα and ω_cyc decrease with t. Stars are not strictlysegregated onto one or the other branch by activity level, though thehigh-ω_cyc/Ω branch is primarily composed of inactive stars.The expanded data set suggests that for t>~1 Gyr, stars can havecycles on one or both branches, though among older stars, those withhigher (lower) mass tend to have their primary P_cyc on the lower(upper) ω_cyc/Ω branch. The Sun's ~80 yr Gleissberg cycleagrees with this scenario, suggesting that long-term activity ``trends''in many stars may be segments of long (P_cyc~50-100 yr) cycles not yetresolved by the data. Most very active stars (P_rot<3 days) appear tooccupy a new, third branch with ω_cyc/Ω~Ro^0.4. Many RS CVnvariables lie in a transition region between the two most activebranches. We compare our results with various models, discuss theirimplications for dynamo theory and evolution, and use them to predictP_cyc for three groups: stars with long-term HK trends, stars in youngopen clusters, and stars that may be in Maunder-like magnetic minima.

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Right ascension:09h08m51.10s
Apparent magnitude:5.93
Distance:19.139 parsecs
Proper motion RA:-192.1
Proper motion Dec:-116.7
B-T magnitude:6.641
V-T magnitude:6.001

Catalogs and designations:
Proper Names   (Edit)
HD 1989HD 78366
TYCHO-2 2000TYC 2495-846-1
USNO-A2.0USNO-A2 1200-06237795
BSC 1991HR 3625
HIPHIP 44897

→ Request more catalogs and designations from VizieR